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v(z) Inversion 

Meng Xu 
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ABSTRACT 

The general 3-D inversion formula developed by Bleistein et al is specialized 
to a depth-dependent medium. An efficient ray tracer for this model is developed 
to calculate the necessary constituents of the ray theory. The traveltime and 
amplitude tables for the inversion are computed. The motivating application for 
this project is detection of small objects- 10cm-in shallow water- 10-20m. 

INTRODUCTION 

This paper describes the background mathematical analysis for specialization of 
the Born/Kirchhoff inversion formalism [Cohen, Hagin and Bleistein, 1986; Bleistein, 
1986], to a three dimensional (3-D) depth dependent background medium. Some 
numerical results that test the code I developed to implement this method are also 
presented. 

The underlying motivating project has as its objective the detection of small ob- 
jects (10-20cm) in shallow water (10-20m). This objective differs from the seismic 
inverse problem in two ways: first, the depth, time and frequencies differ from the 
seismic problem by approximately a factor of 100—not an important difference; sec- 
ond, the lateral extent of the scatterer is finite and small compared to the range from 
the source/receiver array or survey extent, whereas in the seismic problem, the lateral 
extent is often comparable to these other length scales. We have not, at this time, 
exploited this latter difference, so that the resulting code is applicable to both types 
of problems at both scales. 

The survey we have in mind is traditional: a boat carries a towed array along 
parallel lines on the upper surface and periodically sets off an acoustic source, collect- 
ing the resulting backscattered data on the array. Data is then re-sorted in common 
(constant) offset data sets and processed by the program developed here to produce 



Xu 3-D common offset inversion 

a reflector map. In addition, the output provides an estimate of the angularly depen- 
dent reflection coefficient at specular at the sample points on the scatterer, as well as 
an estimate of that incident specular angle with respect to the normal to the reflector. 
By processing the data for a suite of offsets, data for amplitude versus offset (AVO) 
or amplitude versus angle (AVA) analysis is generated for each point on the reflector. 

To calculate the amplitude weights for a 3-D common offset v(z) inversion pro- 
gram, I use the analytic formulas for 3-D ray data in a depth dependent propagation 
medium. These ray data are interpolated from ray coordinates to cartesian coordi- 
nates after ray tracing. From these ray data, I compute the Jacobian of the transfor- 
mation from Cartesian (x, y, z) coordinates to ray coordinates (a, a, ß) and I compute 
the Beylkin determinant h. Both of these determinants are essential to the amplitude 
computation. 

The numerical tests confirm that the computer code matches analytical values 
of the travel time and amplitude along the rays extremely well. Furthermore, for 
a model sphere in constant background, we find that the reflector map successfully 
produces an image of the sphere. 

INVERSION FORMULA 

In this section, the inversion formulas of Bleistein [1986] are introduced. These 
formulas provide a tool for obtaining correct locatios of interfaces as well as a model- 
consistent specular reflection coefficient and incidence angle. The inversion formulas 
have the form of aperture-limited Fourier-like integrals. The integrand of these inte- 
grals contains a determinant that characterizes the viability of inverting a particular 
data set. This determinant is part of a Jacobian that depends on both the back- 
ground propagation parameters and on the source-receiver configuration. As a result, 
the problem of extending the inversion formula to new recording geometries is reduced 
to a problem of computing the value of the form of this determinant that corresponds 
to a specific geometry. 

The full 3-D Kirchhoff inversion formula Bleistein [1986] is 

ß(y) = -L /^-ÄL fiu du e-^b^x,,*.,*). (1) 
8TT

3
7      a(y,O|Vy0(y,OI J 

In this equation, ß(y) is the reflectivity function for the imaging section; y = (2/1,2/2, Vz) 
is the 3-D position vector of the output or imaged point and f = (£1,^2,0) are the 
surface coordinates of the ray to y from either the source or receiver. For a common 
offset inversion, we denote by As and rs (Ag and rg) the amplitude and phase of the 
WKBJ Green's functions at y with initial point at the source. Thus, in the above 
equation 

a(y, 0 = AsAg,      0(y, £)=TS + rg. (2) 

with the latter being the total traveltime from source to y to receiver. Furthermore, 
us(xg,xs,u) is the data in u (frequency) domain; xs and xfl are the source and 
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the receiver position coordinates; h is the determinant characterize the viability of 
inverting a particular data set with a specific geometry at the given output point. The 
expression of the spatial weighting in terms of this one determinant for any source- 
receiver configuration and background propagation speed is a major contribution of 
Beylkin's approach to high-frequency inversion and is being referred as the "Beylkin 
determinant". The details of h will be described later. 

The reflectivity function provides a reflectivity map through a family of bandlim- 
ited delta functions that peak on the reflectors in the medium. The peak amplitude 
is proportional to the angularly dependent reflection coefficient at a specular angle 
9S, where 29 s is the angle between the ray directions from the source and receiver to 
the output point y: 

ßpeak~R(y,9sf-^       F(u)du. (3) 
7TC(y) J-oo 

That is, the peak value of ß for y on S is the geometrical optics reflection coefficient 
multiplied by 2cos9s/c(y) and multiplied by 1/27T times the area under the filter in 
the o;-domain. 

For y not on the reflector surface, the angle 9 is defined by the equation, 

T-,    /        x   *-,    i        \      cos 20 ._,. 
V„r(y,xa)- Vyr(y,xfl) = —-. (4) 

Then, by computing V0(y,£) • V0(y,£)> we are able to show that 

._   ,,    ^..      2cos# ._. 
Iv»*(y.0l = -^p (5) 

In particular, for y on the reflector surface, this provides a means for estimating 
cos#s, through the introduction of another inversion operator, differing from ß by 
one power of |V,,0|: 

AM = A Ui  ,    !^i]1   cw /»'w d" e-^^us(xg^s,u). (6) 
8TT

3
7        a(y,O|V„0(y,O|2 J 

The addition of the extra divisor of |Vy0| introduces this divisor in the asymptotic 
amplitudes of the result. In particular: 

/W(y) ~ R(y>0')-^JF(u)du' (?) 
The fact that these two operators differ by a factor of 2 cos 9/c(y) allows us to esti- 
mate cos 9S from the ratio of the outputs without ever having determined the specular 
source-receiver pair that produced the distinguished value of 93. This, in turn allows 
us to determine R(y,9s) from either output. With knowledge of 9S and the back- 
ground wavespeed, c(y), it is conceivable, within the limits of the accuracy of the 
data, that we should be able to estimate the jump in the propagation speed across 
the reflector using the formula for the geometrical optics reflection coefficient. More 
generally, in a variable density medium, we determine the impedance jump from this 
analysis. By processing data for multiple offsets, we generate data for amplitude 
versus offset (AVO) analysis or amplitude versus angle (AVA) analysis. 
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X 

FlG. 1. Diagram of coordinate system showing an initial ray direction. 

RAY TRACING 

Here, I describe the ray tracing in a depth-dependent medium in 3-D. For a more 
complete discussion of the underlying ray theory for determining solutions of the wave 
equation in the form Aex.p[iur], refer to Bleistein [1984]. 

The ray equations 

The general form of the ray equations 

dxi 

da 
dr_ 

da 

dpi 

da Pi, 

P2,    P\2+P22+P32 

p^-,    i = 1,2,3, 
dxi 

1 
= p . (8) 

provide the basis for ray theoretic modeling. 

The slowness vector p=Vr points in the direction normal to the surfaces of 
constant r. Surfaces of constant r are called "wavefronts", and the p vector points in 
the direction tangent to the "raypaths". These, in turn, are the spatial trajectories 
of the solution to (8). 

We seek solutions of (8) for rays emanating from a single point, say XQ, yo, ZQ in an 
arbitrary downward direction. Those directions are determined by the initial values 
of a and ß representing the azimuthal and polar angles, respectively, of the spherical 
coordinate system. See Fig. 1. Then, the initial ray direction po is given by 

Po = pQ(cosasiYLß,s'masmß,cosß). (9) 

A 
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Specialization to a Depth-dependent medium 

For a medium that has wavespeed variability only in the z direction, p\ and p2 

are constants on each ray path; denote them by p10 and p2o- Note that p\§ and p2o 
are their respective initial values.The ray equations become 

dxi 

da 

dx2                  dx$ 
,      =P20,            ,      =P3, da                  da 

da 
^El - n       dps _    dp_ 
da        '       da        dx$ 

dr       2 

da 

(10) 

From the eikonal equation, we know the value of p$ 

Pz   =   \Jp2(^z) -P2
IO-PI Ph 

=   yfp2(x3)-p2(x30) sin2 ß. (11) 

The third equation in (10) relates a and £3, so the ray equations may be rewritten in 
terms of x3: 

dxi     pio dx2 P20 
dx3      pz ' dx3 Pz ' 

^ = 0, 
dx3 

dp2 
dx3 

= 0, 

dp i       P dp 

dx 3        P3 dx$ 

dr       p2 da 1 

dxz      pz ' dx3 P3 

(12) 

We solve for x\, x2, T, and a as functions of x3, a, and ß. Let the initial depth 
be £30 = ZQ and the final depth be x3 = z. The solution of (13), then, is 

x — XQ 

y -2/0 

T-T0 

cos a sin /?  rz dz' 

<zo)     J*° y/p2{z') -p2{z0) sin2 ß 

sin a sin ß   rz dz' 

<zo)     A, yjp2{z') - p2(z0) sin2 /?' 

./ZQ 

(13) 

c2^)^2^)-?2^)^2/?' 
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dz' 
a -<J0 = / 

y/p2(z')-pHz0) sin2 ß 

Recall that a and ß are the initial angles of the ray. When p3 = 0, the ray is 
horizontally propagating. This is called a "turning point". The equations above all 
have integrable singularities at the turning point, requiring special care in numerical 
computation, to be discussed below. 

The Jacobian J and Ray Amplitude 

Here, I discuss the solution of the transport equation 

2Vr • VA + AV2r = 0, (14) 

for the amplitude A. This equation can also be written as an ordinary differential 
equation in the ray parameter a 

^> = o, (i5) 
da 

with solution (Bleistein 1984, 8.3.12) 

A =       VsWß (16) 

4TrJc{Z)J(a,a,ß) 

In these equations, J is the Jacobian of the transformation from x to (a, a, ß) via the 
solution of the ray equations, 

J = 
d{x,y,z) 

(17) 
d(a,a,ß) 

We calculate the ray theoretic amplitude A by computing J. 

Let us consider the solution of the ray equations in terms of a, rather than z. 
The solution is a family of rays, distinguished from one another by the choice of the 
parameters a and ß. Along each ray, the values of r, a, x, y, z, pt are known. px and 
pi are constants on each ray; that is, independent of a: 

1 •   a px = ——-cosasmp, 
c[z0) 

pi = ——-sin a sin/?. 
C(ZQ) 

(18) 
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With pi and P2 independent of a, the equations for x and y are 

i = (H—-—r cos a sin /?, 
c(*o) 

(19) 
cr 

2/ = 6 + -7—r sin a sm /?• 

and z is given in terms of a by 

= / P3da. (20) 

I do not use equation (20) since we do the calculation on a uniform z grid, instead, 
we calculate a for each z by using the third equation in (10). From (20) and (10), we 
can derive the nine terms of the determinant J in (17) as 

dx 

dy_ 

da 

sin ß cos a 

c(*o) 
sin ß sin a 

dx 
da 

dy_ 
da 

dx 
dß 
dy_ 

dß 
dz_ 
dß 

c(z0) 
dz 
Ta=Pi 

asinßsina 
c[zo) 

asm ß cos a 
c(z0) 

da 
acosßcos a 

c{z0) 
acos ß sin a 

I 
c(*o) 
-sin/? 
c{z0) 

(21) 

da. 

With these values, we can calculate J in (16) and then calculate A by using (17). 
Thus, we obtain A on a uniform grid in z, but calculate it as if the independent 
parameter along the ray were a. 

The Belkyin determinant h 

The effects of source-receiver geometry are completely described by the Beylkin 
determinant 
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h(y,0 =det 

Ps + Pg 

d(Ps + Pq) 

d(p» + Pg) 
3& 

(22) 

in terms of the slowness vectors ps and pg and their derivatives with respect to the 
surface coordinates, (£1, &)• These vector quantities are evaluated at the output point 

y- 
The determinant must be finite and nonzero for the identification of the cascaded 

model and inversion integral as an approximate Fourier transform. Thus, we could 
use the value of this matrix to characterize source-receiver configurations as providing 
invertible data by this formalism at an output point, y. In particular, we require that 
this determinant be finite and nonzero for some range of f values at any y where the 
high frequency inversion is to be computed. 

The general form of the Beylkin determinant can be written for all source receiver 
geometries as 

h(y, 0     =     (Ps + Pg) ■ (Vs + Vg)  X (wa + Wg) 

=     {Ps + Pg) -VgXWg + 

(Ps + Pg) • Vs  X Ws + 

(Ps + Pg) -Vg X Ws + 

(23) 

where, 

(Ps + Pg) •vs X 

Vs 

dps 
Vg    = 

dPg 

Ws 

_ dps 
Wg    = 

9Pg 

0&' 

Wn 

(24) 

The first two terms can be recognized as being the Beylkin determinants for the com- 
mon shot and common receiver geometries. We may write the Beylkin determinant 
as 

h(y,0 = 2cos28 [hs(y,£) +hg(y,£)] + 

(P* + Pg) • \vg xws + v3X wg], 

(25) 

where hg(y,£,)=pg ■ vg x wg is the determinant for the common receiver case and 
hs(y,£)=ps ■ vs x ws is the determinant for the common source case. Unfortunately, 
the last term in (26) contains the cross products vs x wg and vg x ws, which are not 
easily simplified. 
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Another way of writing the Beylkin determinant is 

%,0    =   2cos20[hs{y,Z)+hg{y,O] 
+ha(y,0+h(y,0 (26) 
+hc(y,0 +hd(y,C), 

where the ha, hi,, hc and hj are defined by 

ha(y,0 =Ps-vsx wg,   hb(y,£) =Ps-vg x ws, 

(27) 
hc(y,0 = Pg ■ vg x ws,   hd(y, f) = pg ■ vs x w. 9- 

Unfortunately, we cannot write the general common-offset Beylkin determinant in a 
form that has a common multiplier of cos2 6. 

We already know the vectors ps and ps at the output point from the solution of 
the ray equations. Now we will compute their partial derivatives with respect to £i 
and £2 as solutions of another set of ray equations. 

By taking derivatives of (19) with respect to £1 and £2? respectively, and using 
(20), we obtain differential equations for dpi/d^i and dp2/d^. These equations are 

dpi n  ,      da 

dp2 da . .  _ 

m=-*wJ°' (28) 

dp\ da 

dp2        ,.  .      da 

The only quantities that we do not know in the above equations are da/d£i 
and da/dfa- It is difficult to implement the derivatives with respect to £1 and £2- 
However, using the symmetry of the v(z) medium, we find that d/d£i = —d/dx and 
d/d& = —d/dy as shown schematically in Fig. 2. That is, when a ray is shifted 
horizontally, the quantity a on that ray does not change. Also, one can see from 
Fig. 2, da/dti = (o\ — 02)/$; = — (02 - a^fdx. Thus, da/d/£i and da/d/(2 are 
determined from results already calculated. 

From the eikonal equation-the last equation in (8), the derivatives of p$ with 
respect to £1 and £2 can also be found: 

dps ,    dpi öp2w 

wr-{pWi+P2Wi)/P3' 
9 
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w  —1 

\°2 

°\ Vi 

»1 
dx          '1 

FIG. 2. Ray symmetry used in calculating h 

dp3        ,    dpi dp2.. 

(29) 

The derivatives for source and receiver are calculated seperately using (28) and (29). 
There is a certain symmetry here that can be exploited since the difference between 
the source and the receiver is just a shift in x. Once we have h, together with the 
product of ray theoretic amplitudes, a in 1 and 2, the amplitude computation is 
complete. 

NUMERICAL IMPLEMENTATION 

Ray data are generated along each raypath with a unique coordinate reference 
(a, ß, a). Transformation of ray data from this ray system to a uniform grid is achieved 
by linear interpolation as shown in Fig. 3. Rays intersect with a z-plane. Four 
adjacent intersection points that surround a grid point are found. Linear interpolation 
is used to determine the ray data at the grid point from the four intersection points. 

This scheme is not accurate in the vicinity where rays are near turning because 
the distance between the intersection points will be too large. To deal with rays prop- 
agating nearly horizontally, that is, when p3 is small, vertical interpolation is used. 
Vertical interpolation differs from the above scheme in that it use a vertical plane in- 
stead of a horizontal 2-plane. The nearly horizontally propagating rays will intersect 
the vertical plane with a closer spacing leading to a more accurate interpolation than 
if we used a horizontal interpolation grid. 

Now we have all the ray data we need on the uniform (x, y, z) grid. Use these 
ray data to calculate the Jacobian J, ray amplitude a and Beylkin determinant h. 

10 
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surface 

Z-plane 
(x,y,z) grid point 

FIG. 3. Diagram of interpolation from ray coordinate to uniform grid points. 

Combining these values gives the amplitude weight value at each grid point for that 
particular source point. This amplitude table along with the traveltime table will be 
used in the inversion, it is just a shift and interpolation for other source or receiver 
points as the ray data are invariant for lateral displacement. 

EXAMPLE: CONSTANT WAVESPEED 

In this section, we present the specialization of the above results for a constant 
wavespeed medium where all calculations can be carried out explicitly, in this case, 
equation (17) reduces to 

(30) 

and equation (16) becomes, 

J = — sin/?, 
c 

A 
4-jrr 

(31) 

For the special case of constant-wavespeed, with a generally non-flat surface, some 
simplification of h is possible. Application of Gaussian elimination produces the 
following simplified forms for ha, hb, hc, and hd in (27) 

c3rs      d£i      d£2 

c6rs       d£i      d& 

h(v e) = zLf  ■ ?* x 2f£ 

(32) 

11 
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hd(y,0 = 
-l 

(?T„ 

dxg     dps 

56 Xc>6 

For the special case of constant wavespeed, with a flat recording surface, ha, hg, ha, 

hb, /ic, and hj become 

h 
V3 

9      c3^' 
h = — 

h„ = 
2/3 

hk = 
_ i/3 cos 29 

hr = 

c°r^rg 

yscos 29 

c3r2rg 
KA = 

c?rsr
2 (33) 

Substituting these results into equation (26), the full expression for the Beylkin de- 
terminant may be written as 

%,O=2cos20|f 
{rs + rg)(r

2
3+r2) 

*   9 

(34) 

The corresponding formulas for ß(y) and ßx(y) for 3D common-offset, constant- 
wavespeed, and with a flat recording surface become 

CZ7T J 

{rs + rg){r
2

s+r2
g 

a   9 

COS 6 

fiu du e-iüj[r'+r°]/cus(xg,Xs,u), (35) 

and 

en J 

(rs + rg)(r
2

s + r2
g 

a   g 

fiu du e-iu,[r-+r°]/cus(xg,xs,u) (36) 

Equation (36) exactly matches equation (30) in Sullivan and Cohen [1987], which was 
derived using a different approach. 

Below is a list of comparison of the numerical results and the analytic results of a 
constant background. The grids are 40 x 40 x 40 and the ray shooting grids in a and 
ß are 15 x 15, which is rather coarse. The numerical results have two or three digit 

accuracy: 

12 
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Depth Analytic Numerical Error 
AAz 0.059402 0.062488 5.19% 
8A2 0.287655 0.291268 1.26% 
12Az 0.483947 0.490268 1.31% 
16Az 0.638489 0.644558 0.95% 
20A2 0.754078 0.759777 0.76% 
24A2 0.838724 0.843727 0.60% 
28A2 0.900615 0.905202 0.51% 
32Az 0.946287 0.950361 0.43% 
36A2 0.980478 0.983688 0.33% 
40Az 1.017178 1.020043 0.28% 

These are the amplitude weights on one trace (with a 4-sample skip) at offset 
lOAz. Notice that the accuracy increases with depth, this is because the polar angle 
ß associated with the rays increases with depth and thus has a closer ray spacing for 
interpolation. The computation of travel time was about 10 times more accurate. 

INVERSION EXAMPLES 

The first example provides a simple test of positioning and amplitude accuracy. 
The model consists of constant velocity layers, as shown in Figure 4. Layer velocities 
are 2, 3, 6 and 10km/s from the top to the bottom. Figure 5 shows the model data 
with offset=3km. The inversion produces two outputs: one for ß and one for ß\. 
The amplitudes in the two outputs differ by the factor cosö, where 9 is the specular 
angle. For the first interface, the real values: R is 0.200, Rcosö is 0.172 and 9 is 30.90 
degrees. The inversion results: R is 0.203, Rcos0 is 0.174 and 9 is 30.84 degrees. The 
percentage errors are 1.5, 1.1 and 0.2 percent respectively. For the second interface, 
the exact values: R is 0.333, Rcos# is 0.307 and 9 is 22.76 degrees. The inversion 
results: R is 0.341, Rcos# is 0.315 and 9 is 22.71 degrees. The percentage errors are 
2.4, 2.6 and 0.2 percent respectively. For the third interface, the exact values: R is 
0.250, Rcos# is 0.235 and 9 is 19.94 degrees. The inversion results: R is 0.256, Rcos# 
is 0.241 and 9 is 19.89 degrees. The percentage errors are 2.3, 2.6 and 0.3 percent 
respectively. 

Another example in Figure 9 and Figure 8 shows a synthetic dataset and its 
inversion results. The model is a spherical object located in a constant velocity 
medium. The synthetic data is generated in 3D with an offset of approximately five 
times the diameter of the object. The imaging is done with GOCAD. In the inversion 
image, an isosurface is created for the peak amplitude so that the spherical object 
can be shown in 3D without the diffraction events. The reflection coefficient at the 
normal incident position (the top of the sphere) has an error of only 3.1 percent. 
The position around the top of the sphere is comparably accurate except in the 
neighborhood of the equator, where we have no specular returns. There, the sphere is 
filled in by diffraction returns rather than by true specular points on the reflector. The 

13 
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E 

Q. 

a 

10- 

Distance (km) 
5 10 15 

FlG. 4. Velocity Model for Example 1. 
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FlG. 5. Synthetic data. 
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Q 

8 
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MM 

Midpoint (km) 
6 8 10 

mmmmnmm 

FIG. 6. Reflection coefficient R. 

lower half of the sphere is inaccurately positioned because the change in propagation 
speed across the upper sphere surface does not satisfy the criterion of being a depth 
dependent background velocity model. Thus, I used a constant velocity (1.5 km/s) 
down to the water/seabed interface and another constant below (2.0 km/s). Both are 
lower than the true velocity of 6 km/s in the sphere. Since the data were generated 
with the correct velocity, the specular returns from the lower part of the sphere came 
sooner than they would have at 2.0 km/s. Thus, in the imaging, the lower part of 
the sphere is pulled up, making a more elliptical surface." 

CONCLUSIONS 

I have described a method to calculate the amplitude weights for the 3-D common 
offset v(z) inversion by ray tracing. The traveltime and amplitude tables generated 
by this method are used in (1) to perform Kirchhoff inversion. Tests on synthetic 
data are in progress to improve the program and the algorithm. 

ACKNOWLEDGEMENTS 

I am grateful to professor N. Bleistein and J. Cohen, who have provided important 
comments and insights. I would also like to thank the sponsors of the Consortium 
Project at the Center for Wave Phenomena and Office of Naval Research for their 
financial support. Thanks for the computing facilities necessary for this research 
supported by the National Science Foundation under grant DMS-9506603 and Los 
Alamos National Laboratory. 

15 



Xu 3-D common offset inversion 

FiG. 7. Synthetic data. 

REFERENCES 

Bleistein, 1984, Mathematical Methods for Wave Phenomena, Acdemic Press, INC. 

Bleistein, N., Cohen, J., and Hagin, F., 1987, Two and one-half dimensional Born 
inversion with an arbitrary reference: Geophysics, 52, 26-36. 

Bleistein, N. 1986, Kirchhoff inversion for reflector imaging and sound speed and 
density variation. Proceedings of EAEG/SEG workshop on Deconvolution and 
Inversion. 

Sullivan, M. and Cohen, J. K. 1987. Pre-stack Kirchhoff inversion of common offset 
data. Geophysics, 52, 745-754. 

16 



Xu 3-D common offset inversion 

FIG. 8. Inversion from the synthetic data. 
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